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DOVE is a handy procedure for predicting missing data and forcing every para-

meter in the fitted expression to have a simple, discrete, realistic , physical meaning.

The acronym DOVE , standing for “dual obligate vector evaluation”, refers to its two—

phase evaluation of all parameters, obligating them by least squares in phase 1,

and additionally obligating them in phase 2 by subsidiary conditions that are

supported by information other than the data (10).

Phase 1

Equation 1 embodies the least squares criterion of fit (1).

~ e w ~~~~~~~~~
2 

= minimum (1)

Here z and p refer to observed and predicted dat-i , j, specifies the variable of

main interest, I specifies all other variables, is unity if Z
jj 

exists but

zero for any jj~ combination not observed , and are suitable statistical weights.

Equation 2 Is a generalized form of a widely applicable expression for

predicted data.

~ ~~~~~~~~~~~~~ 
(2)

rn-i

Its parameters comprise factors f, slopes s and intercepts e (2). However, the

confusion of double subscripts on factors and slopes can be avoided by a notation

using different factor and slope symbols for each different product term or mode rn.

Therefore we will switch to expressions for .2~~ such as

2.ij —

(4)

- + + 
~-i 

(5)

.
~i 

X
j  + 

~~ 
+ 

~~ 
+ (6)

or an equation with even more modes as soon as we have decided on the number , ii ,

of modes to include .
The subscr ipts, j  and I, need elucidation. Subscript j refers to the main or

primary variable, while subscript 1. refers to all other variables. To be more
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precise , ~j is a numerical index for a specific example of the principal variable.

In the past , this specific example has been variously called a case, individual ,

object , entity, or unit. Since most of these names are ambiguous or cumbersome ,

we will call it a “jot”. Subscript I is a numerical index for a group having a

conmion set of all the other variables. This group has also been called a variable ,

attribute , characteristic , property, class, or series. We will call it an “ilkt’

(3). For example, in a study of solvent effects the main variable is the solvent.

A j
~ 
of 1 might denote that water is the jot , while a ~j of 2 might identif y the jot

as ethyl alcohol. An I of 1 might refer to an ilk composed of logs of rate constants

for a particular reaction at 25°C in all the solvents in which it has been studied ,

while 1=2 might mean an ilk of spectral measurements of the frequency for a parti-

cular electronic transition of a particular compound in different solvents.

Equations 4, ‘5 or 6 might suggest that we are only fitting a line, plane or

hyperplane , respectively. If the factors (X
j
~ ‘

~~~ . 
...) were all known in advance ,

this would indeed be only a straightforward linear regression analysis to evaluate

the I—subscripted parameters. However, if any of these factors are unknown, the

observed data must be used to determine ~—subscripted parameters as well as 1-

subscripted parameters. Thus, in general this is a nonlinear rather than a linear

least squares problem. Furthermore , the phase 1 least squares is more general

than linear for another reason: any of the factors produced could prove to be a

nonlinear function of one of the other factors or of several of them.

Phase 2

The least squares condition, eq. 1, is not , in general , sufficient to determine

the parameters 
~~m 

and uniquely. For example, if p~~ 
satisfies eq. 4, then all

the values of could be doubled while all the values of x
1 
are halved without

affecting the values of .a~ 
or the criterion of fit of eq. 1.

Therefore we propose to follow the tradition (embodied in the BrØnsted catalysis

law and the Ha~~ett equation (4)) of making the factors represent conceptually simple

physical influences of jots rather than only a compact means for representing or

predicting data. For this purpose we usually need to transform all phase 1 parameters

into new ones having a simpler and c :arer interpretation, by incorporating a number

of physically meaningful, independent, subsidiary conditions corroborated by other
information than the data

I 

Such transformations are far from obvious when expressions as complicated as
- 

- - eq. 5 or 6 hold. In fact, the interpretation of observed or measured data is then
always confounded and invalid conclusions about modes and parameters have usually

been drawn, because the jot affec ts the sys tem under study by two or more
mechanisms of interaction rather than one, and the relative importance of the n

— .- _ ..__ 1W.~~~~..~~~~-~~~~~-—- -———.~— ~~~~~~ ~~~~~~~~~ 
J_,,_,, - ._ -“5-— —
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mechanisms changes with both the jot and the ilk (3,5).

The total number of necessary subsidiary conditions for n 2  (equation 5)

is derived below, as an example. The derivation from eq. 2 for any other number

of modes is similar. First express all (predicted data from a converged

least—squares solution) as the product of a row vector ~~~
‘ of the !—subscripted

parameters times a column vector ,~ of the i—subscripted parameters and unity (6).

The primes indicate values calculated in phase 1.

(~
j

= (.~~[ ~~~~~~~ 
.E1~~~~~~

; 4; —

~ 1

= 
~ 

— -~ 
-

~~~ 

- + b~ ; ‘

~ 

+ 
~ 

-

No individual 
~~ 

is changed by insertion of the 3x3 unity (identity) matrix !.‘

or its equal T4 T between and

Lii - - 4;

I t i i  t 12 t l 3

T -I
I 

t2 1  ~ 2 2  t 2 3

0 0 1

but the components of the resulting vectors

~~~ 
i— f ’ — (

~i 
�.i .E.i~ 

(7)

(~j\

~ 

— 
(~~j) 

(8)

~~1

are constants that are equally good solutions of eq. 1.

— 
~~~~~~~~ 

•
~ 

x
1 

+ bi ‘~ + c~ (9)

Five transformation equations (10—14 , represent ing each parameter) derived

from equation . 7 and 8 convert the old (primed) set of parameters to the new

- ‘S
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(unprimed) set. Matrix T ’, the Inverse of T, was used to derive equations 12—14.

= + t
12; 

+ t],3 (10)

— !2 l’~j 
- + !2 2!j 

- + !2 3 (11)

— 

~~~~~ 
-— !2l~.i 

) ,‘det (12)

— 

~-~-l l~-i 
- — !12.~.i 

) /det (13)

— - + [(t~~t~~ 
— !l3.~.22 

)~~~ 
- + 

~ .13~21 
— !i l!23~~i 

] /det ( 14)

— (!ij!22 — !12!21) (15)

Obviously, T must be chosen so that det ~ 0.

There are six degrees of indeterminacy since six elements to t23 are
unspecified . To remove this indeterminacy, we must specify six Independent

subsidiary conditions and use them to evaluate these six elements.

Four of the six necessary conditions are trivial in this examp le where n=2 ,
because 2 references and 2 standards may be specified arbitrarily. Equating the

factor for one jot in each mode to a reference value (commonly zero) is analogous
to choosing average sea level as a height reference or the freezing point of water

as a temperature reference. Equating a particular factor or slope to a standard

value (never zero, commonly unity) is analogous to choosing the meter as a standard

of length or K as a unit of temperature. It merely fixes the size of the scale

or units in which factors for that mode are expressed .

The remaining two subsidiary conditions are critical ones and should be chosen

with care and clearly stated , because they do have physical meaning and must be

substantiated by other information than the data 
~~ 

to ensure that all of the

transformed factors and slopes will be physically simple and meaningful.

In general, the total number of necessary subsidiary conditions is

of which 2n are trivial and ~2_~ are critical.

The transformation of the parameters is required only once, after convergence

has been reached in phase 1, and is in fact much simpler in program coding and

much faster in computer execution time than any one of the iterative cycles

preceding convergence. Nevertheless, more prior thought and more careful judgement

is required in phase 2 than in phase 1.

There are circumstances where subsidiary conditions and the corresponding

I’ 
parameter transformation of phase 2 are unnecessary . First , one might want to

know the correlation coefficient between observed z and predicted ~ data corresponding

to one or more eq. 2 expressions for p~~
. Neither correlation coefficients nor

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~--~ - - , - ,-— ‘ -- -- —‘5
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values are changed by phase 2. The number of modes could be deduced as the

n value that gives the highest correlation coefficient . Second , one might want

to use one of the expressions , probably the one yielding the highest c o r r e l a t i o n
coef f i c i en t , to estimate unmeasured or missing da ta .  Althoug h p r i n c i p a l  com-

ponents and othe r standard factor  analyses cannot be relied on when there are
missing data (3), DOVE can. However, no meaning or significance can be attached

to the parameters p roduced by phase 1 other than their  abi l i ty  to predic t  data ,
because they are only one set out of multiple inf in i t ies  of sets , all

equal ly good for  reproducing the observed data and predic t ing missing data .

On the othe r hand , if the required n umber of cri t ical  subsidiary condi t ions

ca n be stated and j u s t i f i ed  as true , phase 2 can be used to sort out r e a l i s t i c a l l y
the under lying influences of d i f fe ren t  jo ts , and t he sensi t ivi t ies  to these I n f l u -

ences in d i f f e rent environments (ilks) . These parameters can give considerably
more ins ight into forces and mechanisms than the measured or p red ic ted  da ta .  Th i s
is the intended pu rpose of fac tor  analysis (5).

An Example Using Equation 5

DOVE was developed as an essential tool to solve the chemical problem of

sepa rat ing subst i tuent e f f ec t s  into field and resonance components. A f t e r  proving

highly successful for this purpose , it was applied to separating numerous solvent

e f fec t s  into contributions associated with anion solvation and cation solvation .

Both applications will be published separately in chemical journals. However ,

we anticipate that DOVE will be as or more useful in many other fields of science ,

engineering , and management. Since we went to prove that this procedure does

yield correct answers when other methods fail , and to explain It clearly to

encourage its more widespread use, we will illustrate it here by a synthetic but

easily understood geometric example which we used to test the procedure because the

-p answers are known . This is the problem of using data on 7 properties

(ilks in Table 1) of 10 solid right circular cylinders (of which 3 are pictured

in Figure 1) to evaluate , for  each cylinder , the factors (measures or functions

of radius and height) responsible for variations in the data from one cylinder

to another , and to evaluate , for each property, the slopes (relative sensitivities

to these factors) responsible for variations in the data from one property to

another. We are pretending that we have not yet discovered a way to measure radii

and heights , but wish to calculate them from measurements of these 7 other
properties of the 10 cylinders. Otherwise this is a fairly realistic example for

_ _  
_ _ _  

_ _ _  _ _—‘ —-,-~ ~~~~~~t 
A ~~ — ‘~~~ -~~~ - — — ___________________
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showing the kinds of limitations on such evaluations likely to arise from

inability to measure underlying factors directly.

We converted the data to log data (listed in Table 2) because a DOVE

phase 1 analysis on the raw data gives an overall correlation coefficient of only 0.93!

with 2 modes (6 modes would be needed) hut logarithms give 1.000 with 2 modes. We

chose this examp le because this behavior is typ ical of several real physic a l

problems where logarithms of measured quantities are more simply interpreted t han

the raw data. In chemistry , for example , one uses logs of rate constants or equl—

librium constants in any attempted correlations between structure and reactivity

because they are linear functions of energy differences between structures.

Many sense responses (brightness, loudness , pitch) also appear to be logarithmic

in character .

Th e input data in Table 2 could have been logs of measured data. However ,

instead we ca lcula ted t h em for cylinders having the randomly selected radii and

heights (7) shown in Table 3. Now we will pretend not to know any of the formulas

in Table 1 nor the 20 factors (log r and log h values) nor their 14 slopes in the

logarithmic formulas but proceed to deduce them from Table 2 and subsidiary

conditions only, then check all these deductions by Tables 1 and 3.

Th e most t ime—consuming phase of the analysis is the i terative adjustment of

the parameters unti l  they sat isfy eq. 1. In the f i r s t  half of each cycle we use

multip le  linear regression to calculate a1, b1, and from the observed data

and the current factor values (initially random numbers); in the next half cycle

we use multiple linear regression to calculate factors from the data and the i—

subscripted pa rameters . Further details are given under “P hase 1 Details ” .

It is not necessary to incorporate any subsidiary conditions prior to convergence.
The slope pa r amete rs be f ore phase 2 as we obtained them f r om 70 and f r om 50

data are shown in Table 4. They are complicated hybrid functions of the real

sensitivities to radii and heights. Phase 2 unscrambles them to give simple direct

measures of these sensitivities.

For the phase 2 transformation , we arbitrarily choose x5=0, ~~
=0, a1 1, and

1)
3

1 as the four trivial conditions . Therefore, the factors will become differences

above or below those of the reference jot, cylinder 5, taken as zero, while

first-mode slopes will become ratios relative to that of the property 1 as a

standard , and second—mode slopes will become ratios relative to that of property 3,

another standard .

For the first of the two critical conditions we specify 
~~~~~~~~~~~~ 

reflecting

possible insight that face areas of cylinders are independent of cylinder height

-— - - - - 
‘~~~——— —-—~~~~~ ‘5— 

— -__________________________
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(or of the second—term factor 
~~~~~~~~~~ 

even though we have not yet deduced the funct iona l

form of their dependence on the first—term factor nor yet determined any f~o tors

quantitivel y from the analysis.

For the second of the critical conditions (the last condition ) we choose

a
3
a
1
/2 (or its equivalent , a3~½ , since a1~

l is used as a trivial condition),

because of three convictions: (1) that total flat face area (i=l) is just a

multiple of the circular area of one end (although we need not even know that the

multiplier is 2); (2) that curved area (i=3) is proportional to circumference

with a proportionality constant A 2 that is independent 
of radius but is a function

of height (although we need not know what function it is, i.e., that A 2 equals

height itself); (3) that circumference is proportional to the square root of curved

area (although we need not know the dependence of either on radius , nor that the

proportionality constant A is 2/TI). These four statements to determine critical conditi on
can be reasonably inferred ~ rom simple theoret ’cn

1 consfvle~arl or~ ~~ r ~~~
observations of another kind : they cannot be deduced uniquely from the input data of T abh
Combining , taking logarithms , and using eq. 5 for both ilks, we obtain

where A
4 

is independent of the first factor (although it includes b3, y1, Li’ £3’
A 1, A 2, and A

3
). Since this identity must hold for all values of x

i
, if follows

that A4=0 and ~3 lh/2.

Alternatively and equivalently, we could replace the last condition by a7=—a 1
(or a

7——l ), reflecting either a theory or observations that wire cross—section

and resistance are inversely related , even though we have not yet deduced a complete
formula for either. Although one might expect that another a l te rna t ive  for  the

la st cond i t ion  cou ld be 
~ 2~~ 6’ implying that  radius Is equally influential in

a f f e c t i n g  masses or volumes , that  condition is found to be ineffective for separating

the factors (because the data for 1—2 and 1—6 also have the same dependence on

height). Other undesirable assumptions are orthogonal ity or zero covariance

between the factors because they give wrong answers in this

cylinder problem , and are unlikely to be satisfied by any small sample.

Subs t i tu t ion of the chosen set of six conditions into t ransformat ion  equations
10—13 gives

— 0 — -~-ll~5 
+ -~l2~5 

+ -~l3

£5 
— 0 — 

~2l!5 + +

— 1 (c.2 2!1~ .~~21k1~~~~~~~~t5

b3 — 1 — (!.11!3 —

b
1 

0(t11a1
’ — t 12b 1 )/det

— -—.~~~ - — 
~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ — ---—~~~~ ~ ~~~~~~~~~~~ ~ —
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a 3 = ½ — 
~~22-~3 — 

-~2l~3 ~“g~_

Solution of these six simultaneous equations give the six t values , which may

be substituted back into transformation equations 10—15 to give transformed

parameters consistent with these six conditions. This transformation converts

the previous parameters from either 70 or 50 data to the desired pure parameters

shown in Fig. 2 and listed in the last columns of Table 4.

The slopes a
1 
are all exactly half of the coefficients of log r in Table 1.

The a1 slopes (and also the b1 slopes) are thus in correct ratios relative to one

another. The factor of one—half derives from one of our four less significant

subsidiary conditions , a1
—l. It merely puts a1 

values on a scale relative to a1
for property 1 as unity. In most applications of these numbers only relative

values are needed , so it does not matter that these relative a1
’s have only ~ 1f

of their absolute values. A slightly different way of viewing the effect of tl’e

trivial condition a
1
=l is to say that it makes the x

1 
factors be 2 log r (or log )

instead of iog r , j,~~., measures of flat face area rather than of radius. This is

a trivial difference because radius, diameter , circumference, and flat face area

would all be equally valid quantities for the height—independent factors x
1

to be representing, so the choice among them can be arbitrary .

Regardless of the choice of trivial conditions , the use of valid critical

conditions lets us ded uce that mass has the same dependence on radius as f l a t  face

area (since a
2—a1

), moment of inertia is twice as dependent on radius (since a4
2a

1
)

and all the properties except 1 and 5 show the same dependence on height. Such

deductions about relative factors and slopes and the functional forms of the proper-

ties are as detailed as one could expect from any kind of least squares procedure .

This result obtained either without or with missing data thus seems useful and

quite  sa t isfactory.

-p/

Least squares (1) is simply a mathematical method of f i t t i n g  data , inv oked

because dat a are generally imperfect .  Data that  are believed to be products

3’: of various unknown powers of the factors should be linearized by taking logarithms ,

as illustrated in our example. Prior recognition or evidence for a linear

relationship is not a prerequisite for a valid DOVE analysis, but can often simplify

it by decreasing n.

1--
_____ — - -~~~~~~~~--~~~~
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Le t the number of d i f f e r e n t ilks (1) be u , and the number of different jots (j)
be v , and the number of observed da ta (z fl) be d. Usually da ta are ava ilable f or
only a small frac tion of the maximum of u times v combina tions , but all that are

available and believed to be reliable should be used in the analysis. To dis-

tinguish between data to be used and data that are missing or rejected , we make

unity if the corresponding is to be used , otherwise zero. Although we have

not used weights to reflect differences in precision or reproducibility of different

data (because many measurements are made or reported only once) nor accuracy

(because that is even harder to evaluate), we do use weights to make the final

correla t ion coef f ic ien t for  an ilk independen t of its

range. Therefore we equate each weight w1 
in eq. 1 to the reciprocal of variance

of the data for all j from the mean of for that ilk.

)— l

w = (16)—i —~~~~~ z ) / ~~ ) 2

For eq. 5 , simultaneous equations of forms 17—19 for each ilk and 20—2 1 for

each jo t

~ 
+ .t~~~ Y + = (17)

~ ~ij~ j~ j  + -~i ~ 
+ - (18)

~ + .
~~~ ~~~~~~~ 

+ = (19)

+ = 
~ £ij ~~i~ i~~ ij ~ Ei (20)

~ ~~~~~~~~~ ~~~~~~~ ~ ~ij ~ i~ i — ~ ~ 1~~ 1~ i (~i1—E1) (21)

are obtained by substituting p.
~ 

into eq. 1 and then setting the 3u + 2v partial

derivatives of eq. 1 with respect to each parameter equal to zero. Beginning with

random numbers for and values , one uses the u sets of three

—U—-- . 
— ~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~ .rr-~~~~’~~ -—--~~

--— --
~~ 
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equations (17—19) in three unknowns to solve for values of ~~~, ~~ and c~~.
These are then used in the v sets of two equations (20— 21) In two unknown s to
solve for bet te r values of and 

~~~~~ 

Thus by the successive approximati  on method
of solving these equations alternately , one of the in f in i te  number of sets of va lues
for  the 3u + 2v constants consistent with eq. 1 and 5 is finally obtained . This

particular converged set , dependen t on the ini tial random numbers , is then trans-
formed in phase 2 in to the unique set consistent with the desired six subsidiary
conditions.

All calculations involving real numbers were done to a precision of 16

decimal places, using a FORTRAN IV program on an IBM 370—168 computer. While
conforming logically to the above description , our program obviated storage of both

missing data and the existence matrix by use of three simple arrays for measured

data , 1, and j, each singly subscripted by only a measured datum number (k’~1,2,...,d),

and by searches, when needed , through these arrays.

Convergence was achieved in a smaller number of iterative cycles by appropriate

use of overrelaxation of all the 1—subscripted parameters (ç~~ ., making changes

in them larger than calculated by multipliers of 1.6 or more in most cycles)

and by less frequent but longer extrapolations of all the factors ~~~~~~~~~~ 
changing

each by a cou~ on large multiple of its total change in the last one or two cycles ,

every 15—30 cycles). Such techniques are generally required for a practical solution .

The square of the correlation coefficient , deco ,

deco = l— (~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~ + 2~ )

i i

was calculated just before each extrapolation and two cycles

later, and constancy to 12 decimal places used as a criterion of convergence. Any

extrapolation resulting in a decreased deco two cycles later was effectively

erased by return to the parameters existing just prior to extrapolation .

Deco corrects for sample size (through degrees of freedom) and for dissimilar data

ranges or unit sizes in different ilks (through weights as described above). After

convergence , it represents the fraction of the variation in attributable to

variations in the parameters explicitly included in the expression chosen for

as opposed to errors or unidentified factors.

- - Many more cycles are needed if a large fraction of the possible data are missing.

For example , in this cylinder problem we reached convergence In I cycle when 70

- - - - data were used , within 25 cycles when 50 data were used (deleting the 20 indicated

by atari in Table 2), but only by 321, 350 , and 417 cycles when 42, 41 and 40

—- ~~~~~~~~~~~~~~~~~~~~~~ 
- ____________________
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data we re used (8) .  In the last case , the data  are fe wer than the number of
parameters determined (21 + 20 41), but the subsequent t r ans fo rma t ion  adds
6 subsidiary condi t ions to the 40 data , the reb y p roviding s u f f i c i e n t I n f o r m a t i o n
to make all the f inal  parameters unique and meaningfu l .

Non—l inear least squares based on the Marquardt algorithm (9) is an

alternative method for fitting all the parameters in these or any equations ,

linear or otherwise. Unfor tuna te ly , computer  execution t ime for  each cycle  is
extremely long by the Marquardt procedure when the number of parame te rs exc eeds
10, being proportional to the cube of the total number of parameters , in
striking contrast to DOVE , where it is proportional to the first power. in the

present example with 41 par ame ters , total execution time for convergence is 7 sec .

with  70 data and 51 sec . wi th  69 data (only one missing datum), vs. DOVE execution

times of 0. 44 sec . with  70 data , 1.4 sec. wi th  50 data , and 12 sec. wi th  40

data (30 missing d a t a ) .

Phase 2 Details

2 2
Normalization conditions for the factors ( ~x 1 =v and ~y .  .‘v) are less

1~~
’

conven~ent for trivial conditions than selection of values for  particular jots ,

because they change the sizes of the units in which parameters are expressed every

time data are added or deleted .

For any set of subsidiary conditions to be acceptable , the determinant of T

must be nonzero . In the course of deriving transformation equations for more

than 100 different sets of six subsidiary conditions (appropriate to eq. 5 with

different kinds of problems), we have found it always wise to check this early

in the derivation . With many possible sets of subsidiary conditions , it is much

easier to do two or more successive transformations , incorporating some but not

all of the desired conditions in the first transformation . Substitution of the

values of previously fixed parameters often considerably simpll -ies the derivation

of equations for subsequent transformations.

DOVE has an enormous potential in many fields for correctly interpreting data
-
‘ expressible by equation 5, and a potential unmatched by any other method when some

of the data are missing. Phaae 1 should also be applicable to problems involving

three or more modes. However , with three or more modes, the phase 2 problem of

finding, justifying and incorporating the required large number of critical conditions

becomes a major obstacle in DOVE or any linear least squares, nonlinear least
squares , principal components or other factor analysis procedure purporting to

- — ~~ 
—

~
- -
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-
~ _ ~~~~~~~~~~~~~~~~~~~~~~~ —-.—.
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-
~
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provid e meaningful parameters. Orthogonalization between factors of different

modes has often been used , but the number of such conditions is insufficient ,

orthogo na li ty  is never satisfied by real data from sta t is t ical ly  small samp les ,
and often would not be satisfied even by infinite—size samples when the factors

have real physical significance . For example , for  substi tuent effects in chemistry ,

the resonance and other electronic (field and inductive) factors associated with

substituents certainly have a small but undoubtedly physically meaningful positive

correlation ; and for solvent effects , the two types of factors associated with

the solvent (anion—stabil i zing ability and cat ion—stabil izing abi l i ty)  clearly

have a weak but s ignif icant  negative correlation . To assume that they do not

would force the derived factors to take on numerical values that are complicated

hybrids rather than pure measures of these physical characteristics. Unless the

prope r number of meaningful and valid cri t ical  conditions is incorporated , the

tactors and slopes have no simple interpretation or meaning, even thoug h all

predicted data may agree very accurately with observed data

Suimnary

DOVE can be useful, even when many or most data are missing , for (1) generalized

least squares fitting to evaluate a self—consistent set of all parameters in an

expression for predicting all missing data, and (2), without changing the predicted
data , to transform the set of parameters obtained in phase 1 so that each final

parameter has a simple, pure, realistic, physical meaning. Since predicted data

are expressed as ~ ~ + ~~ + ... +c with ii product terms, phase 2 requires in-

corporation of n +n independent subsidiary conditions, of which 2n are arbitrary ,

i . e . ,  merely fix zero reference points and scale unit sizes, but ~~~~ are

critical , i.e., must be relationships between particular parameters supported by

other information. Both phases are illustrated by a two—mode application with 7 1,

10 
1~~ 

hence 41 parameters, to fit the data plus the 6 subsidiary conditions.

Valid parameters are obtained although 30 of the 70 possible data are missing .

1~~~~ • — - -  
--~~~~~ - - ~~~
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Table 1. Cylinder properties used .

Property observed Formula to be deduced

I ilk nonlinear linear log form

1 total area of f l a t  faces 2Trr~
2 2 log + log(2ii )

2 mass;cS — 1 0  g/cm tS7T r~
2h~ 2 log rj  + log h

1 
+ log(&n)

3 area of curved surface log 
~~ 

+ log + log(2n )

4 axle moment of inertia c51rr~ ”~~/2 4 log + log h
1 

+ log(&n/2)

5 aspect ratio log r
j 

— log

6 volume of circumscribed 4r 2h 2 log r + log i t  + log 4
square prism ~

7 resistance between faces; ph /ii r 2 —2 log r + log h4 + log(pfri)
p— O.l ohm cm ~ -~

Table 3. A group of random numbers , used to generate Table 2.

Cyl inder, J Radius, rj Height , h~ log(r
1
/r5) log(h~/h5

)

1 0.021658190 0.408169508 —1.61 —0.36

2 0.543617487 0.456423521 —0.21 —0.31

3 0.030803025 0.153893471 —1.46 —0.78

4 0.521428823 0.799775958 —0.23 —0.07

5 0.890675187 0.930589199 (0.00) (0.00)

6 0.796412110 0.968748212 —0.05 0.02

7 0.19072008 1 0.059738331 —0.67 —1. 19

8 0.923573375 0.606675744 0.02 —0 .19

9 0.175991654 0.081358790 —0.70 —1.06

- - J 10 0.358400822 0.323721051 —0.40 —0.46
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Tab le 4. Slopes, and

4-

Before Phase 2* After Phase 2

Ilk 70 data~ 50 dat a~ 70 or 50 data~

-~~ 
!i !~i

1 1.66 2.30 1.98 3.01 ( 1.00)~~ (0 .00)~

2 1.19 3.19 1.96 4.40 1.00 1.00

3 0.36 2.04 0.97 2.89 (O.50)~ ( l .OO ) f

4 2.85 5.49 3.93 7.41 2.00 1.00

5 L31 0.26 1.01 0.12 0.50 —1. 00

6 1.19 3.19 1.96 4.40 1.00 1.00

7 —2.14 —1.42 —L99 —1.63 —1.00 1.00

* Af te r  convergence to meet the least squares conditions but before parameter

transformations to incorporate six subsidiary conditions.

t Relative values after incorporation of six subsidiary conditions .

( Value specified by one of the six subsidiary conditions.

~ Number of input data used in the analysis.
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Legend for Figure 1

Figure 1. Shapes of cylinders 1, 3, and 9 in the example. This synthetic

but illustrative problem uses data on 7 measurable properties of these and

7 other cylinders to deduce factors that are pure measures of radius or

height for each cylinder (Figure 2) ,  and also correct relative sensitivities

to these facto rs for each property (Table 4 ) .

Legend for Figure 2

4- Figure 2. A plot of factors vs. factors calculated by DOVE , showing

that it is superimposable on a plot of relative log height, log — log h5,

vs. relative log radius, log — log r 5, for 10 cylinders. These factors

are calculated from either a complete (70) or partial (50 or 40) set of

logarithmic data (Table 2) on the 7 properties listed in Table 1.
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